Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles.
نویسندگان
چکیده
PURPOSE Pancreatic carcinoma is one of the deadliest cancers with few effective treatments. Gold nanoparticles (AuNP) are potentially therapeutic because of the safety demonstrated thus far and their physiochemical characteristics. We used the astounding heating rates of AuNPs in nonionizing radiofrequency (RF) radiation to investigate human pancreatic xenograft destruction in a murine model. EXPERIMENTAL DESIGN Weekly, Panc-1 and Capan-1 human pancreatic carcinoma xenografts in immunocompromised mice were exposed to an RF field 36 hours after treatment (intraperitoneal) with cetuximab- or PAM4 antibody-conjugated AuNPs, respectively. Tumor sizes were measured weekly, whereas necrosis and cleaved caspase-3 were investigated with hematoxylin-eosin staining and immunofluorescence, respectively. In addition, AuNP internalization and cytotoxicity were investigated in vitro with confocal microscopy and flow cytometry, respectively. RESULTS Panc-1 cells demonstrated increased apoptosis with decreased viability after treatment with cetuximab-conjugated AuNPs and RF field exposure (P = 0.00005). Differences in xenograft volumes were observed within 2 weeks of initiating therapy. Cetuximab- and PAM4-conjugated AuNPs demonstrated RF field-induced destruction of Panc-1 and Capan-1 pancreatic carcinoma xenografts after 6 weeks of weekly treatment (P = 0.004 and P = 0.035, respectively). There was no evidence of injury to murine organs. Cleaved caspase-3 and necrosis were both increased in treated tumors. CONCLUSIONS This study demonstrates a potentially novel cancer therapy by noninvasively inducing intracellular hyperthermia with targeted AuNPs in an RF field. While the therapy is dependent on the specificity of the targeting antibody, normal tissues were without toxicity despite systemic therapy and whole-body RF field exposure.
منابع مشابه
Development of an In Vivo Assay for Antibody-Conjugated Gold Nanoparticles Targeted to Human Pancreatic Tumor Xenografts Using an Ex Ovo Avian Embryo Culture System
Pancreatic cancer therapies remain limited in scope and patient prognoses remain poor. To effectively improve pancreatic cancer outcomes, a highly targeted therapeutic is necessary. A bioconjugated gold nanoparticle (AuNP) provides such a therapeutic platform. Effective targeting of the nanoparticle is possible through the linkage of antibodies to target key antigens highly expressed on the sur...
متن کاملCancer Therapy: Preclinical Noninvasive Radiofrequency Field Destruction of Pancreatic Adenocarcinoma Xenografts Treated with Targeted Gold Nanoparticles
Purpose: Pancreatic carcinoma is one of the deadliest cancers with few effective treatments. Gold nanoparticles (AuNP) are potentially therapeutic because of the safety demonstrated thus far and their physiochemical characteristics. We used the astounding heating rates of AuNPs in nonionizing radiofrequency (RF) radiation to investigate human pancreatic xenograft destruction in a murine model. ...
متن کاملIntracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells
BACKGROUND Novel approaches to treat human cancer that are effective with minimal toxicity profiles are needed. We evaluated gold nanoparticles (GNPs) in human hepatocellular and pancreatic cancer cells to determine: 1) absence of intrinsic cytotoxicity of the GNPs and 2) external radiofrequency (RF) field-induced heating of intracellular GNPs to produce thermal destruction of malignant cells. ...
متن کاملLaser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites
INTRODUCTION The current radiofrequency ablation technique requires invasive needle placement. On the other hand, most of the common photothermal therapeutic methods are limited by lack of accuracy of targeting. Gold and magnetic nanoparticles offer the potential to heat tumor tissue selectively at the cellular level by noninvasive interaction with laser and radiofrequency. METHODS Gold nanos...
متن کاملGold-gold sulfide nanoshell as a novel intensifier for anti-tumor effects of radiofrequency fields
Objective(s):Several studies have been carried out to investigate the effect of various nanoparticles exposed to radiofrequency (RF) waves on cancerous tissues. In this study, a colon carcinoma tumor model was irradiated by RF in the presence of gold-gold sulfide (GGS) nanoshells. Materials and Methods: Synthesis and characterization of GGS nanoshells were initially performed. CT26 cells were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 16 23 شماره
صفحات -
تاریخ انتشار 2010